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ABSTRACT

The passivity theorem may be used to design robust controllers for structures

with positive transfer functions. This paper extends this result to more general configu-

rations using dissipative system theory. A stability theorem for robust, model-independent

controllers of structures which lack collocated rate sensors and actuators is given. The theory

is illustrated for non-square systems and systems with displacement sensols-,--- -- ....
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1 Introduction

In this paper we are concerned with control of systems with second-order dynamics modelled

by the following system of ordinary differential equations.

M (t) + Di(t) + Kx(t)= Fu(t) (1)

y(t) = Cdx(t) + Cj (t) + Co (t) (lb)

For structures, this is an approximation to an (infinite-dimensional) partial differential equa-

tion model and this system of equations may be of very high order, although the structural

matrices M, D and K are positive definite and typically sparse and symmetric.

Control theory for time-invariant linear systems which are described by first-order

dynamic equations has been well established for decades, and many control software tools

are available today for systems written in first-order forms. For applications, engineers can

simply convert whatever models they have to the first-order forms and then use the existing

tools to design the controllers.

For second-order systems, transforming to first-order form not only increases the

dimension of the problem, but also destroys the sparsity of the structural matrices. Not only

physical insight, but computational efficiency is often lost in conversion to first-order form.

Existing control analysis and design software may not be able to handle such a large system.

For example, solving a 1000-by-1000 Riccati equation is practically impossible with today's

numerical techniques.

There are basically two ways to address the controller design problem for a large

scale system. One way is to minimize the dimension of the system model, through some

model reduction technique. The reduced model is used in the controller design and some

robust design methodology is used so that the controller stabilizes the original high order

model. This is the approach behind most H,, design for structures [6].

Another way is to design a controller which is independent of uncertainties in

the system model. The advantage to this approach is that, unlike the first approach, the

accuracy of the original high-order model (1) is not assumed, nor is an accurate system

identification required. This is very appealing, since at the current time, no accurate model

of structural damping exists, and the existing models of stiffness are only accurate at low

frequencies. Furthermore, damping is difficult to identify experimentally.

Structures with collocated rate sensors and force actuators (C" = F) are passive,

i.e. have positive transfer functions [2]. The passivity theorem [1, 3] implies that any positive

controller will lead to a stable closed loop system. This fact can be used to design control

systems which remain stable despite large modelling errors. Recently, several researchers
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have incorporated this approach with other robustness theorems in robust controller design

for systems which have collocated rate sensors and force actuators but whose transfer func-

tions may be non-positive due to computation delays, actuator dynamics etc. [7]. However,

the restriction of collocated sensors and actuators is a stringent one, and excludes many

applications. In particular, systems with displacement sensors and systems with a different

number of inputs and outputs cannot be handled with this approach.

Since altering the configuration of sensors and actuators does not alter the fact
that structures with positive damping dissipate energy, the question arises as to whether

the passivity theorem can be generalized. For instance, when a mass-spring-dashpot is

attached to any mechanical system, including flexible space structures, the damping of the

system is almost always augmented regardless of the system size. The parameters of the

mass-spring-dashpot are arbitrary, model-independent and thus insensitive to the system

uncertainties. Knowledge of the system model may be used in adjusting the parameters in

order to satisfy system performance requirements. However, changes or errors in the system

will not destabilize the system because it is an energy-dissipative device. The question

arises as to if there are any feedback controller designs using sensors and actuators which

behave like the mass-spring-dashpot device. The answer is positive as shown in [4], wherein a

conventional engineering approach was used to design active controllers which behave like the

mass-spring-dashpot device. Although the conventional approach provides physical insights,

it lacks the theoretical basis necessary for application to more complicated systems such as

nonlinear flexible robots. This paper is motivated by the desire to provide a rigorous theory

to support this argument based on physical intuition.

In the next section we summarize results on dissipative system theory obtained

mainly by Willems [8, 9]. A stability theorem which generalizes the passivity and small

gain theorems is given. In order to facilitate the application of these ideas to non-linear

models of structural dynamics, no assumption of linearity is made. In subsequent sections

we apply this theory to derive conditions for robust, model insensitive control of (1) non-

square systems with rate sensors (2) systems with displacement sensors. As an example, we

present a rigorous proof of the stability of a mass-spring-dashpot type controller.

2 Dissipative System Theory

Intuitively, a dissipative system is one which dissipates energy. In other words, the energy

stored in such a system will be less than the energy supplied to it This concept can be

written formally in terms of a storage function which generalizes the concept of energy. The

theory in this section is taken from [5, 8, 9].
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Definition 2.1: A dynamical system E is defined as follows:

(i) U is the input space and consists of a class of U-valued functions on the positive real

line.

(ii) Y is the output space and consists of a class of Y-valued functions on the positive real

line.

(iii) Both Y and U are finite-dimensional inner product spaces and both Y and U are closed

under the shift operator i.e. if u(t) E U then u(t + T) E U.

(iv) Define R + := {(t 2 ,tl) E RxR;t 2 >_ t1}. The state transition function 0" R' xXxUL-

X and defines the state through the relation x(t 2 ) = q(t 2,t 1,x(t),u) This function

satisfies the usual axioms for autonomous dynamical systems:

(a) Consistency of initial condition: 0(t, t, xo, u) = xO

(b) Seingroup property: O(t 2 , t 1 , 0(tl, to, xo, U), U) = (t 2 , to, xO, u)

(c) Causality: u1(t) = u 2 (t) for to < t < t1 implies 0(t, to, Xo, Ul) = 0(t, to, xo, U2 ) for

to < t < ti.

(d) Time Invariance: 0(t, + T,t 2 + T, xo,U ) = 0(tl,t 2, Xo, U2 ) for all T > 0, t2 >_

t1,u 2(t) = ui(t + T).

(v) The function r : X x U -* Y is the output function: y(t) =r(x(t),u(t)).

In view of the system time-invariance (4d) we will henceforth use to = 0.

Definition 2.2: A dynamical system is said to be dissipative if there exists a

nonnegative function S : X -4 R+, called the storage function and a supply rate w : U x Y

R such that , for all t1 _ 0,

S(zo) + z w(u,y)dt > S(x ) (2)

where u E U,nx = 0(t 1,O, xo, u) and y = r(x,u).

Note that the storage function is, in general, not unique. The following theorem

shows that if an appropriate supply function is found, it is not necessary to actually define

a storage function.

Theorem 2.1 [8] If there exists a supply function w(u, y) for E su, 17 that

j w(u,y)dt >0

for all t1 > 0 then there exists a storage function S such that (2) is satisfied and so E is a

dissipative system.
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Moylan and Hill [51 define a useful class of dissipative systems

Definition 2.3: [5] Given P, Q, R of appropriate dimension with Q, R symmetric,

define the supply rate

w(u, y) = (y, P,) + (y, Qu) + (u, Ru) (3)

A system is (P, Q, R)-dissipative ir

0 w(u, y) >0 Vt1 > 0.

Passivity, or positivity, can now be seen to be the special case where P = R = 0

and Q = I. Strict passivity is obtained by defining R = -2I and Q = I. Similiarly, we

obtain input-output stable systems by choosing P = -I and R = k2 I where k is the gain.

Suppose G is a given systcm, for which we wish to design a controller H, arranged

as shown in Figure 1.

The feedback system, or alternatively the pair (G, H), is said to be externally

stable if u1 ,u 2 E L2(0, oo, U) implys yl,Y2 E L 2(0, oo, Y), and there is a maximum ratio, the

L2 gain, between the norm of the input and the norm of the output.

The following theorem provides a simple test for external stability of intercon-

nected (P, Q, R)-dissipative systems .

Theorem 2.2 [5][Theorem 1] Consider systems G and H connected in the familar feedback

configuration shown in Figure 1, and assume that H is (P2 , Q2, R 2)-dissipative and that G

is (P1 , Qi, RI)-dissipative. The closed loop system is externally stable if

[ R, + P 2 Q -Q2 1
Q:- Q'-Q, R 2 +P 1  (4)

is negative-definite. C

The well-known passivity and small-gain theorems [3] can easily be derived as special cases

of Theorem 2.2.

In order to study stability of feedback systems with more general supply rates,

we state an observability assumption.

Assumption 1: There exists some T > 0 and a non-negative continuous

function a : R -4 R, with a(O) = 0 and a(o) > 0 for a > 0, such that for identically zero

input and any initial state x0 , we have

0oT y'(t)y(t)dt > a(II xolj).

(For finite-dimensional linear time-invariant systems, this is equivalent to the standard def-

inition of observability.)
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Theorem 2.3 Suppose that

(a) A given system C has a supply rate w, := (y, Ply) + w,(u, y) + (u, Ru) with

j wl(u,y)dt > 0,

(b) H is a system with supply rate w 2  (y, P 2y) + wc(Yu) ± (u, Rau) and

j w2(U, y)dt > 0.

If R2 + P1 and P2 + R1 are negative definite , and both G and H satisfy Assumption 1, then

the origin is an asymptotically stable equilibrium point of the closed loop system (Figure 1)

with zero external inputs.

Proof: We will demonstrate a Lyapunov function for the closed loop system. Let

S and S2 be storage functions for G and H respectively. Define r = (rl, r 2) and similarly y.

We have u, := r, - y2 and u 2 := r2 + yl. It is clear that the interconnected system (Figure

1) is dissipative with storage function S := S + S2 and supply rate

I(L,y) == w(ul,y1) + 2 (u2 , y 2 ).

We will show that S is in fact a Lyapunov function for the closed loop system.

Since

S(Go) + j 2(r, y)dt > S(11) (5)

it follows that for r, = r 2  0,

S<_ w1(u 1,y 1)+W 2 ( 2 ,y2 )

= wl(-y2, y1) + W2 (y, y2)

ya(R +P 2)y 2 + y'(P 1 +R2)yl

< 0

since the terms arising from the cross rate wr cancel. Thus , S is negative definite (Assump-

tion 1).

It now remains only to show that S is a positive definite function.

S(zo) >_ S(x1 ) - j (r,y)dt >j -Y'(R, + P2 )y2dt + j -y(Pi + R 2)yldt.

Since both plant and controller satisfy Assumption 1, there exists a positive definite function

/3 with
S40) _! 0111 i)

and so S is a Lyapunov function for the closed loop system. The result follows. 0

Theorems 2.2 and 2.3 will be used to derive controllers for uncertain structures.



3 Rate Sensors

Suppose we have a structural control system (1) with only rate sensors i.e. Cd = C,, = 0.

It is known that if C, = F then the system transfer function is positive, or equivalently,

the system is (0, 1, 0)-dissipative [1]. The passivity theorem can be used. In particular, any

strictly positive stable controller will lead to a stable closed loop system. It is not necessary

to determine the model (1) beyond ensuring that C" = F and that the dynamics are second

order.

In this section we extend this result to more general configurations.

Theorem 3.1 Consider (1) with Cd = C = 0 and suppose that there exists an operator

Q : U -+ Y such that

C' Q = F. (6)

Then, for some p2 > 0, the system (1) is (-p 2 I,Q,0)-dissipative.

Proof. For arbitrary p > 0, define the supply rate

w(u,y) := (y, _p 2y) + (y, Qu).

Define
UT(t) := PTu(t): u0, t < T (7)

'~0, t > T

and let YT(t) be the output which corresponds to the input uT(t).

J0 w(uy)dt - p 2(Y ,  ) + YT,QUT)dt

= -p2(YT, YT) + (YT, QuT)dt + J p 2(YT, yT)dt

1 j -p 2(YT, YT) + (YT, QuT)dt

1 f P2 ( T, )±+(PT, QiI)dW

where denotes the Laplace transform of y.

Defining v(jw) jw(K - Mw2 + D3w)-'Fi!T(3w), so p = ,

WG(U, y)dt > I j -p 2 (C"', Cv) + (v, FiiT)d

f_ v(3w)*[-pC,'C + -(K - Mw2 + Djw)Jv(3w)dw27r oo 3

- 2 L.100_)'[-p Cd'Cd + D)]v(,w)dw.
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If we choose p 2 small enough so that p2C'C, < D, the expression in square

brackets is positive definite for all w. 0l

The following stability theorem is now immediate.

Theorem 3.2 Assume we have a second order system with rate sensors, andC Q = F, as

in the statement of the previous theorem. If a given controller H is (1) externally L 2-stable

and (2) QH is a positive transfer function, then the closed loop system is stable.

Proof: The system is (-p 2I, Q, 0)-dissipative for some p > 0 (Theorem 3.1). Let k be the

controller gain and choose a, b so k < b2/a 2 and b2 < p'. We have that the controller is

(-a 2I, Q', b2I)-dissipative. The result now follows from Theorem 2.2. E3

This result is more general in several ways than previous results depending on

positivity of a structure. The plant is not constrained to be square and the operator Q is

not required to bear any relation to a Lyapunov function for the system. However, the rate

sensors and force actuators do need to be sufficiently "collocated" so that CQ = F for some

Q.

4 Structures with Displacement Sensors

In many applications, sensing is performed with displacement sensors. If the control is

still input as a force, then the system transfer function is by no means positive, even the

extended sense of (0, Q, 0)- dissipativeness discussed in the previous section. We would like

to obtain a robustness result similar to that obtained in the previous section. One approach

to this problem is to use multipliers (Figure 2). Figure 2 can be shown to be equivalent to

Figure 1. The multiplier function L is chosen so that a standard result such as the passivity

theorem may be used for the transformed systems. Unfortunately, for a given plant, there

is no guarantee that a suitable multiplier function exists, nor any clue of how to choose

the multiplier function. Furthermore difficulties associated with ensuring causality of the

transformed systems may arise. Details can be found in [3].

Looking at the situation from a physical viewpoint, replacing rate sensors on a

structure with displacement sensors does not change the internal dynamics of the structure.

Intuition tells us that the system should remain dissipative. If suitable supply and storage

functions do exist, so that the system (1 ) with displacement sensors is dissipative, Theorem

2.3 can then be applied to design robust controllers.

In order to keep the discussion simple, we consider the situation where only

measurements of displacement are made i.e. C, = C = 0. We note first that the definition

of supply functions can be extended to include functions which involve derivatives of the
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inputs and outputs. The input and output spaces have to be defined appropriately so that

the supply function is well-defined.

Theorem 4.1 Consider the second-order system (1) with C, = = 0, assume that there

exists Q so CdQ = F. Let c2 > 0 be a lower bound on system damping so that c2M < D.

Define the cross rate

wc(u,y) c2(y, Qu) + (9, Qu). (8)

Then there is a number p2 > 0 so that this system is dissipative with respect to the supply

rate
wG(u, y)= _p 2(y,y) + -W(u, y)

Proof: First note that y exists for all outputs y so that wG is a well-defined supply

function. As in Theorem 3.1 and in [3] we will show that

oTwc(u, y)dt > 0

for arbitrary T > 0 by showing that its transfer function is positive. Dissipativeness of the

system with this supply rate will then follow from Theorem 2.1.

Defining UT(t):= PTu(t) as in equation (7), let yT(t) be the output which corre-

sponds to the input UT(t).

Twc!(u,y)dt = -p 2(yTYT) + c2 (yT, QUT) + (YT, QuT)dt

o ~ ~~jO p (YTYT) +c(YT, QLT) +± ,QTd

= -P2(YT,YT) + C2(YT, QUT) + (yT, QuT)dt + p2 (yT, YT)dt

f _ -P 2(YT, YT) + c2(yT, QUT) + (Y'T, QuT)dt

27r J -p 2 (j~~T, IfT) + C2(!jiT, QliT) +(s TQJ dw

Defining v(3w) (K - Mw 2 + Daw)-lFti(Jw),

TWG(u, y)dt f 00 v(jw)[-p 2 Cd'Cd + c2(K - Mw 2 ) + Dw 2]v(3J)dw.

If we choose p 2 so that p2Cd'Cd < c2K, the expression in square brackets is

positive definite for all w and for arbitrary T,

J0 TwG(U,y)dt > 0

as required. 01
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Theorem 4.2 Consider the structural system defined in the previous theorem. Assume ob-

servability. The closed loop system (Figure 1) will be stable if a linear controller is (a) stable

(b) dissipativ ' with respect to the supply rate

w(u, y) = wo(y, u) = c2(u, Qy) + (it, Qy) (9)

where Q, c2 and wc arc as defined in the statement of the previous theorem. The input space

U is restricted to inputs with it E 1 2(U).

Proof: Define the positive number p2 as in the previous theorem. Since the controller is

stable, it is (-a2I, 0, b2 I)-dissipative where we choose b2 < p2 and b 2/a 2 large than the

controller gain. Choose an observable realization for the contreiler. If condition (b) also

holds, then it follows that the origin is a stable equilibrium point of the closed loop system

with ul = u 2 = O(Theorem 2.3 ). Since both plant and controller are linear and finite

dimensional, it follows that the closed loop system is also externally stable. C3

Errors in the model of the system stiffness K or actual damping larger than the

estimate will not destabilize the closed loop system. Other than ensuring CdQ = F, the only

knowledge of the structure required in designing a stabilizing controller is a lower bound on

the damping so that the controller satisfies (9). If the actual system damping is greater than

the estimate, the closed loop system will still be stable.

Note that this result could also have been obtained through defining the multiplier

function L = Q(c2 +s). We feel however that there are several advantages to using dissipative

system theory. The first one is that supply rates such as (u, ) may be defined without

the problems of causality and stability associated with the multiplier function s. More

importantly, we think that the the choice of supply rate is clearer when it is known that the

system "dissipates energy" in some sense.

5 Example: Second Order Controllers

In order to illustrate the ideas discussed above, consider the second order dynamic system

with displacement sensors and CdQ = F for some Q as discussed in the previous section.

Suppose we wish to control this system with a combination of direct feedback

and the displacements of a second order system. Mathematically, the proposed controller

has the form

M2'i 2(t) + D2ai2(t) + K 2x(t) = F2u2(t) (10)

y2(t) = Cd2 X2 (t) + Eu 2(t).

9



Since both plant and controller are stable some readers might expect stability of
the closed loop system to follow if both plant and controller have positive damping. This is

not true, as the following simple example illustrates.

Example: :(t) + 8i(t) + 100x(t) = ul(t) i 2 (t) + .001x 2 (t) + .1X 2(t) = u2 (t)

u = r i - X 2  U = r 2 + X

While for damping d = 8, the closed loop is Stable, increasing the plant damping to 12 will
lead to an unstable closed loop.

However, by using the results from the previous section we can obtain a controller
(10) which is unconditionally stable.

Theorem 5.1 Suppose we have a observable second order plant (1) with C, = Ca = 0

and (2) there exists Q such that C'Q = F . If the controller (10) is implemented so that

C'Q= -F2 and the bias E satisfies QE > F2'X'F 2 where X > K 2
- 1 , then the closed loop

system is stable.

Proof: From Theorems 4.1 and 4.2 the result will follow if we can show that the
given system is dissipative with respect to the supply rate (9) for arbitrarily small c2 > 0.

Define v(jw) := (-M 2w
2 + D 23w + K2)-"tT(JW), and set E'Q' = F2XF + E2

where X, E2 are as yet undetermined. Using the same frequency domain technique as in
Theorems 3.1 and 4.1, we obtainT 0w,(u, y)dt > c2  v* ( jw)Z(3w)v(3w) + **r (3w)G 2v'T(3W) dw

where

Z(j) = [K2XK 2 - K2] + wv2 [D2/c2 + M2 - M 2 XK 2 - K 2XM 2 + D2XD2 ] + w4M 2XM 2 .

Choose c2 small enough that (1) c2 M < D and (2) the coefficient of w 2 is positive definite.

If XK 2 > I, then Z is positive, and the controller is dissipative with supply rate w. for all
E2 > 0. Therefore, the closed loop is stable (Theorem 2.3). That is, the closed loop system

is stable for all E which satisfy

QE > F2K2-F . (11)

Does this design have any physical meaning? The answer is positive. Consider

the special case where the controller and the system have the same nimber of states, and
furthermore assume that all states are measurable and the actuators are collocated with the

sensors.

Uii,(t) + Di,(t) + Kx,(t) = u1 = rl(t) - y2 (t' (12)

10



Yi - X1.

Adjust the controller gain so F2= K2:

M2i 2(t) + D2;i2(t) + K 2x 2(t) = K2u 2 = K 2(r2 (t) + yI(t)) (13)

Y2 = -K 2x 2 + Eu 2  Ksx 2 + E(y, + r 2 )

Defining 1 := (x 1 , x 2) we can write the closed loop system as

M 0 g)+ D 0 _gt) + K +. K2I-
0 M 2 I [0 D2 I [ KE K2 0 K

This is a stable second order system as long as the matrix

Kt K+E -K 2

K2  K2

is positive definite i.e. it represents the stiffness matrix for two "springs" K and K2 connected

in series. This is true if E > K2. Noting that F2 = K2 and Q -= I, this inequality is identical

to the condition (11) arrived at using the dissipativeness criterion.

If we have scalar systems, the choice E = k2 leads to a stable closed loop system.

Setting the reference inputs to zero,

U1 = -Y2 = k2 (X2 - xI)

The controller in this case reduces to a spring-mass-dashpot system connected in series with

the system mass as shown in Figure 3.

For d2 = 0, the system is just two spring-masses connected in series. As k2 is

increased, the stiffness of the system increases. For d2 > 0, the system is always stable for

k2 > 0, and increased amounts of energy are dissipated in the dashpot as d2 is increased. By

adjusting the control system parameters, k2, d2, m2 , we can design the closed system to be

under-, critically or over-clamped.

6 Conclusions

We have used results in dissipative system theory and Lynpunov's Second Method to develop

stability theorems which generalize the passivity and small-gain theorems. Simple conditions

for robust, model-independent controllers which stabilize non-passive structures were derived.

Throughout the paper we have used the second-order form of the dynamical equations. Only

displacement and velocity feedback were studied. However, the extension to accelerometers,

and to combinations of these three types of sensors is straightforward.
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Although for displacement feedback, a lower bound on the system damping is

required, the controller is otherwise independent of the system parameters. It should be

emphasized that this is a robustness result with respect to structural uncertainty in the

absence of measurement uncertainty and other contributing factors.

Control performance is, of course, dependent on the system characteristics. Knowl-

edge of the system model can always help improve a controller design. Future work will ex-

plore combining satisfaction of the appropriate dissipative condition with design techniques

such as LQG regulator and Ho, methods. Finally, the controller has been formulated from

the continuous-time setting. Actual implementation of the controller, however, most likely

requires usage of a digital computer. In future work, effects of sampling and time delays

will be addressed. Other practical issue that can also affect the control performance such as

measurement noises, and actuator and sensor saturation limits will be investigated.
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Figure 1: Feedback System

Figure 2: Feedback System with Multipliers

SYSTEM CONTROLLER

(A Real Spring-Mass System) (A Virtual Spring-Mass-Dashpot System)
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Figure 3: A simple spring-mass system with a simple spring-mass controller
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